DSN Progress Report 42-44

January and February 1978

An Analysis of Alternate Symbol Inversion for Improved
Symbol Synchronization in Convolutionally
Coded Systems

L. D. Baumert and R. J. McEliece

Communications Systems Research Section

H. van Tilborg
Technological University, Eindhoven, The Netherlands

In the current NASA Planetary Program Flight/Ground Data System Standard, it is
proposed that alternate symbols of the output of a convolutional encoder be inverted in
order to guarantee the symbol synchronizer a certain richness of symbol transition.

In this paper we analyze this technique, in particular we characterize those convolu-
tional codes with the property that even if alternate symbols are inverted, arbitrarily long
transition free symbol streams may occur. For codes which do not exhibit this patho-
logical behavior, we give an upper bound on the largest possible transition-free run.

l. Introduction

Many modern digital communication systems derive symbol
synchronization from the data itself rather than from a sepa-
rate synchronization channel. A common type of symbol
synchronizer, and one that has become a NASA standard, is
one that includes a clock whose phase and frequency are
governed by timing estimates derived from the received data.
The performance of this kind of symbol synchronizer depends
in part on the “richness” of symbol transitions in the received
data. An unusually long sequence of all 0’s or all 1’s, for
example, could cause the local clock to lose synchronization,
and so also data, temporarily.

If the data were uncoded, one possible method of increas-
ing the transition density would perhaps be to add the se-

90

quence - - - 10101010 - - - to the data stream, i.e., by inverting
alternate symbols. The new data stream would then contain a
long transition-free string only if the original data stream
contained a long alternating string. Presumably a long alternat-
ing string is less likely than a long constant string, and so this
method would probably have the desired effect.

If the data is encoded prior to transmission, one could again
try to increase the transition density by inverting alternate
symbols, and indeed this symbol inversion is now part of
NASA’s data system standards (Ref.3). And whereas for
uncoded data one can only assert that symbol inversion will
tend to increase the transition density, for convolutionally
encoded data a much stronger statement can be made: Pro-
vided the code does not suffer from a certain improbable
property, there is an absolute upper bound one can place on

the length of the largest possible transition-free symbol run
from the encoder, independent of the data being encoded. For
example, the NASA standard rate 1/2 constraint length 7 has
maximum run 14; the rate 1/3, constraint length 7 has maxi-
mum run 12,

In this paper we shall give a general approach to the
problem of finding the largest possible encoded output of the
form --- 10101010 - - - from any convolutional code. In Sec-
tion 2 we will classify all codes which admit an infinite run of
this type; in Section 3 we will give an upper bound on the
largest runs for codes which do not admit an infinite run; in
Section 4 we work some specific examples; and in the Appen-
dix we collect some known results about convolutional codes
which we need to derive our results.

Finally, a word about notation is needed. The convolu-
tional encoders of concern operate on binary sequences of the
form

a:(...’a_l’aosaly...)

which, theoretically at least, extend infinitely in both direc-
tions. The index refers to discrete time intervals. In practice,
however, each sequence “starts” at some finite time;i.e., there
is an index s such that r <{s implies @, =0. The codewords
produced by the encoder are of the same type; indeed some
are also of finite length (@, =0 for # > m). Using x as a place
holder it is sometimes convenient to write

oo

-
a= E a.x’=§ a.xt
i 1]
- B

We also use certain algebraic properties of these formal power
series, e.g., x" +x"t 1l + - = x"/(1 +x).

Il. Convolutional Codes with an Infinite
Run of Alternating Symbols

Theorem 1. Let C be an (n, k) convolutional code over
GF(2) with basic generator matrix &. Then C contains a
codeword with an infinite run of alternating symbols if and
only if there exists a linear combination v = [y, -, v,] of
the rows of G such that

modulo 1 + x, n even

fx,~+x, 1] orfx, 1, 1,x]

b, v 1=
! " modulo 1 +x?, n odd

Proof. We prove sufficiency first. When # is even consider
the codeword produced by the inputs X; =a,/1 + x applied to
each of the generators g;, where v = X a,g;. After an initial
transient the output will be v, (1), v,(1), - - -,v,(1) and since
v(1) = vix) modulo 1 +x the result follows. For n odd note
that v;(x) =x modulo 1 + x2 means that the sum of its even
coefficients is 0 and the sum of its odd coefficients is 1,
whereas the situation is reversed for v (x) =1 modulo 1 +x2.
Thus after an initial transient the input sequences X; = a;/1 +
x2 will produce an infinite run of alternating symbols.

We now prove necessity. When # is even an infinite run of
alternating symbols results from the juxtaposition of n-tuples
of the form 10...10 or 01.. .01. For definiteness, assume the
former occurs. Then, if a codeword of C contains such an
infinite run, there exists a codeword ¢ and input sequences

X,, -+, X, none starting earlier than ¢ = 0, such that
xS
Xlgl +...+ngk=h+m[l,O,...,l,O] s=20

Here g, is the /P row of G and £ is an n-tuple of polynomials
(of degrees <s) which describes the initial segment of ¢. Since
G is a basic encoder, there exists a basis for the module of
n-tuples of polynomials over GF(2) which is of the form
&1 8k &rsey> 8y 1 Let {gjl } be the dual basis, i.e., the
gjL are n-tuples of polynomials such that g; - g/.l =0unlessi=j
and g/ + g; = 1. Taking inner products on both sides of the
equation yields

€.
S10) g = A]

fx 10 T x

where A; is a polynomial and € =0orl Thus X g +---+
Xy 8 is

Multiplying through 1 + x and reducing modulo 1 + x yields
Eefng (1,0, -+ 1,0] modulo I + x

91

so this is the vector v as promised.

Similarly, for n odd,

xs

2X.g.=h+t (Lx, - x,1]
777 1+x2
€.
X =4 +—1L
] 7 1+x2

where A]. is a polynomial and € = 0,1, x orl+x. As before,
this yields

Ze].g].Exs [1,x, - x, 1] modulo 1 +x?

and the proof is complete. [Q.E.D.]

In the proof above the condition that G be basic was not
required for sufficiency; thus if the congruence is satisfied an
infinite run of alternating symbols does indeed occur in the
code. Note that since the €; are restricted at most 2k (resp.,
4k) linear combinations need be tried when 7 is even (resp., n
is odd). For modest values of k this is not too large a task.

The case k=1 is particularly important. Here, basic just
means that the n polynomials making up the single generator
g, have no common polynomial divisor and the test amounts
to reducing g, modulo 1 +x or 1 +x2.

It is also possible to test for the presence of an infinite
alternating run in terms of the dual code (see Corollary to
Theorem 2 below). Of course one does not usually have a
generator matrix for the dual code at hand, but when such is
available the test is simpler than the one above, for large k. (A
generator matrix for the dual code can always be computed,
however; see the appendix for this).

Theorem 2. Suppose an (n, n- 1) convolutional code C
over GF(2) is given and f= [f,, -, f,] generates the dual
code, where g.c.d. (f;, -+, f,,)=1. Then there is an infinite
run of alternating symbols in some codeword of C if and only
if

(n even) Ef2 =0modulol +xfora=0o0ra=1

ita

- 2
1 =0modulo 1 +x

(n odd) If, txZf,

92

Proof. Since (f,, - - -, f,,) = 1 all codewords of the dual code

are multiples of

0f0fs0 o fii for fay g 500

where d = max (deg f;). Thus it is sufficent to check the inner
products of this codeword of C* with an infinite alternating
run.

n even.

«01 010 ~01010
(@=1) f16520030f00 ol i1 5 e
(«=0) Fiofaols0 7 Taolii oS5
nodd:

~01010 -1 0101 01010

(coef. of x)
F16f205 30700 ol 1121 51 0y a2 00 0 ey

(constant)

Fiof0f30%a0 ol 1 5 Say

In both cases the necessity of the above conditions is imme-
diate. (For n odd the coefficients referred to are g, b from

Zf,;txZf,,,, Sax +bmodulol +x?

On the other hand the above conditions obviously guaran-
tee the existence of a codeword (- - -1010- - -10- -) extending
infinitely in both directions. However only codewords “start-
ing” at some finite time are of concern and it remains to be
shown that such a codeword is in the code. But this is trivial; it
amounts to using the same input sequences truncated to start
at some time r, each preceded by a finite number of initial
symbols which set the encoder’s memory units properly.

[QE.D.]

Suppose an (n, k) convolutional code C over GF(2) with
generator matrix F for its dual code is given. Suppose F is a
basic encoder, i.e., the g.c.d. of its n - k& by n- k subdeter-
minants is 1, then, if [f;, -, f,] is any row of F it follows

that (f}, - - -'f,) = L.

LetC;(i=1,---,n- k) be the (n,n~ 1) convolutional code
dual to the ith row of F. Clearly

n-k
c=[¢
i=1

and the maximum run of alternating symbols # any codeword
of Chas length L = L(C) <min L(C)).

Corollary. When #n is odd an (n, k) convolutional code C
over GF(2) contains a codeword with an infinite run of alter-
nating symbols if and only if every row of a basic generator
matrix F for C* satisfies the congruences of Theorem 2. When
n is even it is further necessary that this be true for the same
value of a (O or 1).

Note. Suppose 7 is even and L(C;) = L(C;) == with a # |
for C; and @ # 0 for C;. Add row j to row i in F; this gives an
equivalent basic encoder which has L(C;) < ee.

lll. Bounds For Finite Runs of Alternating
Symbols

If no codeword contains an infinite run of alternating
symbols the question arises as to the maximum length L of
such a finite run. It is easy to give a bound for L in terms of
the generators for the dual code. From this bound it is possible
to derive another bound (in general, weaker) which has the
advantage that it can be applied directly without knowledge of
the dual (see the Corollary to Theorem 3, below). In Section 4
these bounds are applied to some specific examples.

Suppose [f;, -, f,] is a generator matrix for an (n, 1)
convolutional code C over GF(2) with d = max (deg f;), then

Fiohao - ooy T fidhha fua

is its associated bit pattern. Let s be the number of symbols
occurring between the first and last nonzero symbols f;; inclu-
sively. If (f,, -+, f,)=1, s is the minimum length of any
nonzero codeword of C and

nd-1)+2<s<n(d+1)

Theorem 3. Let C be an (n, n - 1) convolutional code over
GF(2) with generator matrix for its dual code given by
[fy, 1,1, where (f}, -, f,) = 1. Suppose no codeword of

C contains an infinite run of alternating symbols then the
maximum run of alternating symbols in any codeword of C
has length L =5+ n - 2 when n is even or when » is odd and

hx)=Zf, +x2f,, =1+xmoduo 1 +x?

If nn is odd and A(x)= 1 or x modulo 1 + x2? the maximum run
of alternating symbols has length L =s + 2n -~ 2.

Combining this with the limits given above for s yields

nd n{d+2)- 2 nevenorn odd,
hx)=1+x
<L <
nd + 1) nd+3)-2 nodd h(x)=
1orx

Proof. Suppose n is even. Then from Theorem 2 above
X fy; =% fy;4, = 1 modulo 1 +x. If there were an alternating
run of length 2 s + n - 1 it would have s consecutive symbols
which would have inner product zero with the bit pattern of
the f’s. This contradicts T f,; =2 f,;,, = 1,50 L<s+n- 2.
On the other hand consider an alternating run of length s + n.
Change the first and last of these symbols; the inner products
will be correct provided that they match up with the symbols
1,---,sand n + 1,---, n + 5. Clearly this run can be
extended to the right and the left to form a codeword of C; it
is merely a matter of selecting symbols 1 * jn so that the inner
products are zero. Such a codeword could conceivably extend
infinitely in both directions; however using the same argument
as at the end of Theorem 2 it follows that there is a finite
codeword with an alternating run of this length.

If n is odd then, from Theorem 2, A(x) # O modulo 1 + x2.
If (x) = 1 +x the proof above applies, so L =s +n - 2. If
A(x) = 1 or x then one of the inner products is zero but the
other is not (see the display shown in the proof of Theo-
rem 2). If there were a run of length > s + 2n - 1 there would
have to be a run of s consecutive symbols where the inner
product was zero. On one side or the other of these s symbols
there would have to be n more symbols from the alternating
run of size s + 2n - 1. These n symbols together with s - n of
the original s symbols would also have to have inner product
zero contrary to the hypothesis.

So L <s+ 2n- 2. As above a finite codeword of C can be
constructed containing an alternating run of length L =5 + 2n
- 2. It is merely necessary that positions n, - -+, n+s- 1 of
this run have inner product zero with the bit pattern of the f7.

[Q.ED.]

93

Recall from the previous section the codes C; [(n, n - 1)
convolutional codes dual to the rows of F, where F was a basic
generator matrix for C*] and the obvious property

n—-k
c= N ¢
i=1

i

from which it follows that the maximum run of alternating
symbols in any codeword of C has length L = L(C) < min
L(C;). Suppose L(C;) is finite for at least one value of i. Then
if d is the maximum degree of any element in the ith row of F
it follows that

nd+2)~2 neven
LIO) < L(C) <

nd+3)-2 nodd

Corollary. Suppose an (n, k) convolutional code C over
GF(2) is given with basic generator matrix G. Let u be the
maximum degree of the k¥ X & subdeterminants of G. Then
either L = L(C) = or

nu+2)-2 neven

n(u+3)-2 nodd

Proof. Under these conditions C! has a generator matrix F
(a so-called minimal encoder for C1) all of whose entries are of
degree < u. Thus the result follows immediately except when
n is even and L(C;) = oo fori=1, -, n- k. Here if L is finite,
a finite bound for it can be determined by replacing row i of
in turn by the sum of rowiand rowj, forj=1, -, n-k (+
i). Of course, in general, all this work will not be required but
the point is that such transformations do not increase the
maximum degree of the elements of the dual encoder and so
the bound given above is valid here also.

IV. Some Examples
Consider the (3, 2) code C generated by the encoder G:

x*ex? x4l

x? x3+x+1 x2+x?+1

94

x +1

(mod I + x?)

Note that the sum of its rows is congruent to {1, x, 1] modulo
I + x2 thus, by Theorem 1, C contains a codeword with an
infinite run of alternating symbols. As mentioned in Section 2
this conclusion is valid even though G is not a basic encoder (x
+ x2 divides its 2 X 2 subdeterminants). Applying Theorem 2
to the dual encoder F= [x5 +x3 +x2 +x, x3 +x2+1,x% +x
+ 1] note that (f, f,, f3) = 1 and that f, +xf, +xf3=x6+
x5 +x% +x2 +x + 1 =0modulo 1 +x2 so that again the
existence of a codeword in C with an infinite run of alternat-
ing symbols is assured. C* does not contain such a codeword
since F is a basic encoder and F = [1 +x, x, x] modulo 1 +x2.

As a second example consider the (4, 1) code C with
generator F' of its dual code given by

x 2Hx+1 x+1 xTt+x+1
x2+x+1 x3+1 x3 x? 41 =
x? x? +x+1 x? x> +1
1 1 0 1 a=0
1 0 1 0 a=0,1
1 1 1 0 a=1

Thus each row of F' satisfies the congruences of Theorem 2
for some value of a. But row 1 satisfies the congruence only
for & = 0 and row 3 only for a = 1. Thus C does not contain a
codeword with an infinite run of alternating symbols. In fact
since the sum of rows 1 and 3 of F' has degree d = 3 it follows
that the maximum run of alternating symbols in any codeword
of C is bounded above by n(d + 2) -2 = 18. A basic generator
for Cis [1+x2 +x% +x5 +x6 +x7 +x3,x3 +x% + x5 +x%,x
+x7 +x8, x +x2 +x3 +x6 +x7 +x8 +x%] thusu=9and
the Corollary to Theorem 3 gives only the weaker bound a(u +
2)-2=42.

Up to this point the distinction (mentioned in the appen-
dix) between the dual generators F and F' has been over-
looked. Actually it is F' that is used in the proofs of Theo-
rems 2 and 3. There is no problem with this because either ¥
and F' both satisfy the congruences of Theorem 2 or they

both do not. Similarly in Theorem 3 h(x) =1 + x for Fif and
only if A(x) =1 + x for F'. However if the actual value of s is
to be used to establish a bound the bit patterns of F'should be
examined as s can differ for corresponding rows of F and F'.
In the case at hand the sum of rows 1 and 3 of F' hass = 14;
soL<s+tn-2=16.

In the example above the Corollary to Theorem 3 was a
little disappointing in that it gave a bound of 42 whereas more
careful examination yielded L < 16. (Even 16 may be too
high; a cursory examination of the bit pattern associated with
the basic generator for C given above indicates that 13 may be
the answer). When k = n - 1 it is clear from Theorem 3 that
encoders do exist for which the bound given by the Corollary
is tight. In general there are minimal encoders whose codes
have no infinite alternating run but do possess codewords with
finite alternating runs of length nu + k + 1 which compares

reasonably well with the bounds given by the Corollary. E.g.,

consider the (n, k) convolutional encoder
I ' 0
G =

where [is an identity matrix of orderk- 1and 0'isa k- I by
n - k + 1 matrix of zeros.

Here p = p(x) =1 +x +x* and forneven g = g(x) =1 + x2
+x# (u = 3) while for n odd g(x) = 1 +x3 +x# (u=4).G is
obviously basic and minimal. Further Theorem 1 guarantees
that no codeword generated by G contains an infinite run of
alternating symbols. That G generates a codeword with a run
of alternating symbols of length nu + kX + 1 can be confirmed
by selecting the inputs X, - - - , X, properly. E.g.,letn =8,k
=4 and u = 3 then the bit pattern associated with the bottom
row of G is

00011111 00010101 00001010 00011111

Soif Xy =1+x2+x3 (=10110--)and X, =x +x2 +x3 +
x* with X, = X =0, the codeword generated by G is

00011111 01010101 01010101 01010101 010111 - - -

which starting with its 8th symbol has an alternating run of
length 29 = 8 - 3 + 5. Obviously X, - - - » X _ can always be
adjusted to fill in the first £ -~ 1 symbols of each block of n
symbols in the proper fashion. So the input X, is the critical
one. For n even, k even and y odd X, = 1 +x2 +x% +--- ¢
x#~1 + x#._ Similar formulas exist for the other cases-when 7 is
odd these vary with u modulo 4.

As final examples consider the NASA Planetary Standard
encoders of rates 1/2 and 1/3 (Ref. 3). Here G = [g,, g,] or
(81,85, 85] withg =1+x2+x3+x5 +x6, g, = [+x +x2 +
x3 +x6 g, =1+x+x2+x%+ x6. These both are basic
minimal encoders which do not possess infinite alternating
runs in any codeword as Theorem 1 easily shows. (Note that
[g1, &3, &,] and [g,, g5, £,] do possess such runs, thus if
infinite alternating runs are to be avoided the outputs in lg;,
&, &3] must be interleaved properly). For the rate 1/2 code
the Corollary of Theorem 3 yields L <2 + 8 - 2 = 14 and
Theorem 3 itself guarantees the existence of finite codewords
with alternating runs of this length, since s = 14 in this case.
The rate 1/3 code has a dual generator F' given by

x 1+xt+x® T+x+x2+x3 | n(x)=1+x

1+x+x? x)=0

Apply Theorem 3 to the first row of F'. Heres=11s0 L <s+
n~2=12. A finite codeword with an alternating run of length
12 is generated from G by the input X; =1 +x +x2 + x4 + x7
(=---0111010010 - - -); so this bound is achieved.

95

Appendix

Convolutional Encoders

Proofs of most of the results mentioned here may be found
in Forney (Ref.1). Computations are restricted to GF(2);
however everything is easily generalized to any finite field.

A k X n matrix G of polynomials &ij determines a rate k/n
(k¥ < n) convolutional encoder with input sequences X; (i =
1, - -+, k) and output sequences Y; G=1,---,n), where

provided that G is of rank k. These output sequences Y; are
interleaved to produce a single codeword

YooY, Y Y Y, Y,

The collection of all such codewords (i.e., the “row space” of
G) is the rate k/n convolutional code generated by G. Such an
encoder may be realized by k shift registers the ith of which
contains v; memory units where »; = max;(deg g;); v; is called
the constraint length of the ith register. This is said to be the
obvious realization of the encoder G and thus requires » = X v,
memory units in all (v is the overall constraint length of the
realization).

Two convolutional encoders are equivalent if they generate
the same code. An encoder is called basic if there is no
polynomial % (deg % = 1) which divides all the & X k subdeter-
minants of G. Basic encoders do not suffer from catastrophic
error propagation and thus they are preferred over others.
Fortunately every code can be generated by some basic
encoder. lLe., there exists a basic encoder equivalent to any
given encoder G.

In general a basic encoder that has maximum degree u
among its k£ X k subdeterminants requires at Jeast 4 memory
units for its implementation. Sometimes it requires more.
When u is obviously sufficient, i.e. when u = Z v;, the encoder
is said to be a minimal encoder. Since equivalent basic
encoders have the same value of u, a minimal encoder requires
as few memory units as any equivalent basic encoder. In fact, a
minimal encoder requires as few memory units as any equiva-
lent encoder, basic or not. Again, every encoder is equivalent
to some minimal encoder. So, theoretically at least, there is no
loss in assuming that any particular code at hand is generated

96

by a minimal encoder. (Finding a minimal encoder equivalent
to a given encoder can be a computational chore however; see
below). It is a direct consequence of the minimality condition
that any linear combination of the generators of a minimal
convolutional encoder has degree greater than or equal to the
degrees of all the generators occurring in the combination.
This implies that equivalent minimal encoders not only have
the same overall constraint length v = ¥ p;, but that they also
have the same number of generators of each degree. I.e., the
set of degrees v; (7 = 1, - - -, k with multiplicities counted) is
an invariant of minimal encoders under equivalence. Closely
related to these last two comments is a property of minimal
encoders called the predictable degree property which allows
easy ennumeration of the short codewords generated by a
minimal encoder, see Ref. 1.

Associated with any (n, k) convolutional code C is its dual
code Ct. C* is the (n, n - k) convolutional code which consists
of all sequences orthogonal to every codeword of C. If Cis
generated by a minimal encoder with overall constraint length
v then C! can also be generated by a minimal encoder of the
same overall constraint length.

If [g,, ", g,] is a generator matrix for the (n, 1)
code C and if Zfig; = O for polynomials f,, -, £, it is
algebraically convenient to consider [f;, - -, f,,] asarowofa
generator matrix F for C1. But if one considers the codewords
the coefficients of the f;’s must be reversed. For example, let n
= 2; then one codeword of C is

0810820811 82181282
This codeword is orthogonal to the symbol sequences
.. f10 f2 0 PO

oS fief 00 k=1

since the respective inner products are the coefficient of x% in
2fg; = 0. Thus each f in F should be replaced by x¢ f(1/x)
where ¢ is the maximum degree of any element of F. An

equivalent generator matrix F"is given by x”# f(1/x) where v, is
the maximum degree of any element in row i of F. If Fisa
minimal encoder then so is F'. The sequence {v; } of maximum
degrees of the rows is the same for F and F’, thus they have
the same overall constraint length also. Thus for most purposes
F can be taken to be the generator matrix of the dual code C*.

Every generator matrix G has an invariant factor decompo-
sition G = AT'B. Here A and B are square matrices of deter-
minant 1 with polynomial elements. 4 isk X kand Bisn X n.
I" is a k X n diagonal matrix whose diagonal elements v (i =
1,---, k) are nonzero polynomials. The v, are called the
invariant factors of G and v, divides v,,,. Over GF(2) an
encoder is basic if and only if y, = 1. This decomposition of G
can be produced by elementary row and column operations on
G; see, for example, Gantmacher (Ref. 2). Now the first k
rows of B constitute a basic encoder equivalent to G. Further-
more B! exists and has polynomial elements. If F7 denotes
the last n - k columns of B™! then Fisan- k X n
polynomial matrix which is a basic encoder for the dual code

Thus given any encoder G it is possible to find an equiva-
lent basic encoder by computing the invariant factor decompo-
sition. However simpler methods often suffice. If G is not
basic, i.e., if the greatest common divisor of the ¥ X k
subdeterminants of G is a polynomial A of degree > 1, let ¢ be
any irreducible polynomial dividing 4~ Then some linear com-
bination of the rows of G is divisible by . By performing a
row reduction of G modulo Y one determines a transforma-
tion matrix T of determinant 1 such that 7G has a row
divisible by . Divide this row by y; this produces an encoder

equivalent to G with h replaced by h/y. Eventually this
process terminates in an encoder equivalent to G with / = 1;
i.e., an equivalent basic encoder.

Similarly, if G is basic but not minimal the matrix of Vi”‘
order terms of G will have rank less than k; thus a row
reduction of this matrix leads to a transformation T of deter-
minant 1 such that TG has smaller overall constraint length
than G. Clearly, after at most X v, - of these steps a minimal
encoder equivalent to G will be produced.

An alternate method of finding generators for the dual code
also exists. After all, any n - k linearly independent vectors
orthogonal to G will form such a generator matrix, so the
following process can be used to produce them one at a time.
Suppose an (n, k) encoder G is given. Since G has rank k some
k X k subdeterminant is not zero. Let H be the matrix formed
from these k columns plus one other. Then A has dimension k
X k + 1 and is of rank k. Consider the k + 1 X k + 1 matrix '
whose first kK rows are H and whose k + 15t row is row i of H,
Expanding |H'l in terms of this last row shows that the vector
of cofactors is orthogonal to every row of H, since |H'[=0.
Thus using this vector of cofactors to specify k + 1 compo-
nents and setting the other components equal to zero we have
a generator for the dual. Adjoin this generator to G and repeat
the process until n - k generators have been found. These # -
k generators will generate the dual code. Note that afterj rows
have been added to G it will have rank k +j so the process
does not break down. Further, in the special case where k = n
- 1, the single generator for the dual code will be basic if G
was. (In general this will not be the case for k < n - 1
however).

Acknowledgement

The authors wish to thank M. K. Simon and J. G. Smith for bringing this problem to
their attention and for suggesting several possible approaches.

References

1. G. D. Fomey, Jr., “Convolutional Codes I: Algebraic Structure”, IEEE Trans. Inform.
Theory, Vol. IT-16, November 1970, pp. 720-738 (See also correction: same journal,

May 1971, page 360).

2. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.

3. NASA Planetary Program Flight/Ground Data System Standards. Revision 5, June 1,
1977. National Aeronautics and Space Administration, Washington, D.C.

97

